Math 2803: Number Theory and Cryptography

Fall 2014 Syllabus

Instructor Information

- Instructor: Dr. Matthew Baker
- Office: Skiles 128, Georgia Institute of Technology, Atlanta, GA
- Office Hours: 4:00 pm – 5:00 pm on Tuesdays via Adobe Connect
- E-mail: mbaker@math.gatech.edu

Course Description

This course is an introduction to number theory and its applications to modern cryptography. Number theory, one of the oldest branches of mathematics, is about the endlessly fascinating properties of integers. The backbone of the course will be modular ("clock") arithmetic, which we will apply to calendar calculations ("What day of the week was March 17, 1903?"), music theory (the circle of fifths), security and randomness (how to flip a coin over the telephone), and the mathematics of card shuffling (magic tricks included!). We will also learn how number theory is used in public key cryptography to securely transmit information over the internet. This leads naturally to discussions of factoring, primality testing, and the discrete logarithm problem.

The course will cover similar topics as Math 4150 but with more emphasis on examples and applications and less on abstract theory. Specific topics to be covered include unique factorization (the Fundamental Theorem of Arithmetic), divisibility criteria, the Euclidean algorithm, modular arithmetic, the Chinese Remainder Theorem, Fermat's Little Theorem and Euler's Theorem, primitive roots, public-key cryptography (including RSA, ElGamal, and digital signatures), primality testing, discrete logarithms, quadratic reciprocity, and the Prime Number Theorem. We will also provide an overview of the software package Sage. Students are not expected to have significant computer programming experience but will be expected to write some simple code and do basic computations.

The course will be offered jointly for Georgia Tech undergraduates and gifted Georgia high school students who have run out of traditional math courses to take in their schools. This is why it will be taught as an asynchronous online course with instruction done via web-based videos, handouts, interactive apps, and the course text. The official class meeting time will be used for exams and office hours. Exams will take place in the
official course meeting location, and office hours will be conducted online via Adobe Connect. Students will have weekly homework and will be required to submit the homework online in PDF format. Students will need access to a reliable Internet connection and a computer with sufficient capability to handle the processing requirements of live web conferencing.

Prerequisites

Students must have completed, or be currently enrolled in, Math 1502.

Textbook & Course Materials

The required textbook for this course is:


The textbook is available through the Georgia Tech bookstore at http://gatech.bncollege.com.

The course text will be supplemented by a number of handouts and web-based links.

Course Requirements

- Computer with high-speed internet connection
- Adobe Flash Player: http://get.adobe.com/flashplayer
- Attend the day-long mini-conference on December 13, 2014 on the Georgia Tech campus.

Equivalent Credit

MATH 2803 offers advanced mathematics students attending Georgia public high schools a chance to receive Georgia Tech credit. Upon successful completion of the course, an official transcript will be available from the Office of the Registrar.

Electronic Resources

Course Website
http://math2803.gatech.edu
This website will be used to post instructional videos, handouts, interactive group activities, and homework assignments.

Piazza
We will be using Piazza for course announcements and to facilitate class discussions. Rather than emailing questions just to me, I encourage you to post your questions on Piazza.

T-Square

https://t-square.gatech.edu

You will be turning in your homework assignments via T-Square. You can also use T-Square to check your grades.

SAGE

http://www.sagemath.org

It is recommended that you download and install SAGE on your personal computer (this will avoid having to deal with server outages). However, SAGE can also be used in two different online formats, the SageMathCloud https://cloud.sagemath.com and the Sage Notebook http://www.sagenb.org

Adobe Connect

Adobe Connect will be used for online office hours on Mondays and Tuesdays.

Announcements

The instructor will post announcements related to the course through Piazza. When a new announcement is posted, students will receive a notification from Piazza. Students can set which email address to use for notifications in Piazza.

Homework

- There will be weekly assignments that will be an integral part of the course.
- Assignments will be due every Wednesday by 11:55pm. Homework assignments must be typed and submitted in PDF format through the assignments tool in T-Square.
- Unexcused late homework will not be accepted.
- Homework assignments will be a mixture of computations, computer work, and abstract reasoning / proofs.
- On the homework sets, collaboration is not only allowed but strongly encouraged. However, you must write up your homework solutions yourself and understand what you are writing, and you should credit ideas to classmates as appropriate. Copying directly off from a classmate’s written solutions is prohibited.
- I take these policies seriously and violations will be dealt with in a strict manner compatible with Georgia Tech’s honor code (available at http://www.honor.gatech.edu/).
Exams and Final Project

- There will be three 50-minute closed-book midterm exams during the course of the semester. Exams will be held between 4:05 pm and 4:55 pm on Mondays at different locations.
- Any cheating, if detected, will result in a score of zero for that exam.
- In lieu of a final exam, students will complete a final project in which they do one of the following: (1) Create a Wikipedia page for a topic related to the course which does not already have a useful page. (2) Create an instructional video between 5 and 10 minutes long on a topic related to the course. (3) Write a creative dialogue which helps explain one of the course topics. (4) Conduct original research on a problem related to the course. The final project will be due on December 10, 2014.
- Students will also be required to put together a poster or interactive demonstration related to their project and present it during the poster session at the end-of-the-year miniconference on December 13, 2014.

Miniconference

Students will attend a one-day miniconference at the end of the course on December 13, 2014. Miniconference activities will include the following:

- A poster session
- A luncheon provided by Georgia Tech
- Lectures on some interesting topics related to the course
- A tour of campus for the high school students enrolled in the course
- Surveys designed to gather feedback and help improve the course

Grading Policy

<table>
<thead>
<tr>
<th>Assignment</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Midterm 1</td>
<td>15</td>
</tr>
<tr>
<td>Midterm 2</td>
<td>15</td>
</tr>
<tr>
<td>Midterm 3</td>
<td>15</td>
</tr>
</tbody>
</table>
The class participation grade will be based on students’ active participation in group work and Piazza discussions.

Technical Assistance
- T-Square: If you experience difficulty with T-Square, please contact fatimah.wirth@pe.gatech.edu.
- Piazza: If you have any problems, please email team@piazza.com

Accessibility
- Disability and Campus Accessibility
  http://policylibrary.gatech.edu/disability-and-campus-accessibility
- Assistance for individuals with disabilities
  http://policylibrary.gatech.edu/-assistance-individuals-disabilities
- Academic accommodations for students with disabilities
  http://policylibrary.gatech.edu/b.-academic-accomodations-students-disabilities

Netiquette
Netiquette is the etiquette of online behavior. Since written communication is the main means of communication in an online course, you will need to follow the same rules of behavior as you would in a face-to-face course when communicating with the other students in the class. This means that you will have to respect other students taking this course. Negative personal comments are strictly prohibited.

Topic Outline/Schedule
All assignments are due at 11:55 pm on their respective due dates.

<table>
<thead>
<tr>
<th>Week</th>
<th>Topics</th>
<th>Assignments</th>
<th>Due Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Course Overview</td>
<td>Assignment 01</td>
<td>8/27/14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Assignment</td>
<td>Date</td>
</tr>
<tr>
<td>---</td>
<td>--------------------------------</td>
<td>------------</td>
<td>------------</td>
</tr>
<tr>
<td>2</td>
<td>Pythagorean Triples</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Divisibility and Unique Factorization</td>
<td>Assignment 02</td>
<td>9/03/14</td>
</tr>
<tr>
<td>4</td>
<td>Modular Arithmetic and Applications</td>
<td>Assignment 03</td>
<td>9/10/14</td>
</tr>
<tr>
<td>5</td>
<td>Congruences</td>
<td>Assignment 04</td>
<td>9/17/14</td>
</tr>
<tr>
<td>6</td>
<td>The Theorems of Fermat and Euler</td>
<td>Assignment 05</td>
<td>9/24/14</td>
</tr>
<tr>
<td>7</td>
<td>The Chinese Remainder Theorem and Euler Phi Function</td>
<td>Assignment 06</td>
<td>10/01/14</td>
</tr>
<tr>
<td>8</td>
<td>Prime Numbers and Sage</td>
<td>Assignment 07</td>
<td>10/08/14</td>
</tr>
<tr>
<td>9</td>
<td>Primality Testing</td>
<td>Assignment 08</td>
<td>10/15/14</td>
</tr>
<tr>
<td>10</td>
<td>Introduction to Public Key Cryptography</td>
<td>Assignment 09</td>
<td>10/22/14</td>
</tr>
<tr>
<td>11</td>
<td>The RSA and ElGamal Cryptosystems</td>
<td>Assignment 10</td>
<td>10/29/14</td>
</tr>
<tr>
<td>12</td>
<td>Primitive Roots and Discrete Logarithms</td>
<td>Assignment 11</td>
<td>11/05/14</td>
</tr>
<tr>
<td>13</td>
<td>Quadratic Residues</td>
<td>Assignment 12</td>
<td>11/12/14</td>
</tr>
<tr>
<td>14</td>
<td>The Law of Quadratic Reciprocity</td>
<td>Assignment 13</td>
<td>11/19/14</td>
</tr>
<tr>
<td>15</td>
<td>Euler, Master of Us All</td>
<td>There will be no assignment for this lesson</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Final Project</td>
<td>Final Project</td>
<td>12/10/14</td>
</tr>
</tbody>
</table>
Course Goals/Objectives

In this course, students will learn to:

- Appreciate the beauty and deductive logical structure of number theory
- Appreciate the role of number theory in modern cryptography
- Read and write mathematical proofs
- Use computer software such as SAGE to solve number theory problems

They will also master the following topics:

- Pythagorean triples and Fermat’s Last Theorem
- Greatest common divisors and the Euclidean algorithm
- Modular arithmetic and divisibility tests
- Linear Diophantine equations and the extended Euclidean algorithm
- The Fundamental Theorem of Arithmetic, and why it is not obvious
- The infinitude of primes and the Prime Number Theorem
- Perfect numbers and Mersenne primes
- The Chinese Remainder Theorem and applications
- Fermat’s Little Theorem, Euler’s Theorem, and the mathematics of card shuffling
- Primality testing and Carmichael numbers (composite numbers which masquerade as primes)
- Primitive roots and discrete logarithms
- Public-key cryptography, including the RSA and ElGamal cryptosystems
- Quadratic residues and the Law of Quadratic Reciprocity (including a proof of the latter based on different ways to deal playing cards)

By the end of the course, students will also know how to:

- Mentally calculate the day of the week given a date and determine musical key signatures using modular arithmetic
- Analyze the mathematics of perfect shuffles
- Send secret messages to classmates
- Flip a coin fairly over the telephone

and they will know how to answer questions such as:

- How can you tell if a number is prime or composite?
- What is the probability that a randomly chosen integer is prime?
- What is the probability that two randomly chosen integers are relatively prime? (Teaser: the answer involves the number π!)
- Why does the “casting out 9’s” rule (for determining if a number is a multiple of 9 or not) work? Is there a similar rule for testing divisibility by 7 or 11?
- How can you find all integer solutions to equations like $3x + 5y = 1$?
- Are there infinitely many Pythagorean triples (integers $a$, $b$, $c$ with $a^2 + b^2 = c^2$)
2

\( c \)? If so, can we find a formula that describes all of them?

- What exactly is Fermat’s Last Theorem, why is it such a famous problem in the history of mathematics? And what the heck is the Riemann hypothesis?
- Is it possible to send a secret message via entirely public channels to someone you’ve never met?
- What are quantum computers and what do they have to do with number theory and cryptography?
- What made Gauss and Euler so singularly awesome?
- What do research mathematicians do? Is there anything left to say about number theory? (Hint: the answer to the second question is a definitive yes!)

**Feedback**

Your feedback and creative suggestions throughout the semester will be crucial for making the course a success, so I encourage you to constantly be on the lookout for ways in which the course could be enhanced or improved and let me know!